Australian Centre for Water
and Environmental Biotechnology

You are here

Project Dates: 2014


Water-related energy use in Australian cities accounts for some 13 per cent of the country's electricity use, 18 per cent of natural gas use and 8 per cent of Australia's GHG emissions. By 2030, energy consumption is expected to grow to 200 - 250 per cent of 2007 levels. If the water sector is to adopt the Australian government target to reduce greenhouse gas (GHG) emissions, then we must cut the equivalent of over 90 percent of the projected 2030 energy consumption levels, or reduced the GHG intensity of the energy by a similar amount, or pay for offsets. The bill for energy, for urban water, is anticipated to rise even faster, growing 500-700 per cent over the coming 25 years. This now represents a significant business risk to both the water sector and to communities relying on energy-intensive water services. Residential water use is responsible for approximately 50 per cent of urban water-related energy consumption. Hence, water conservation can be a cost-effective way to reduce energy consumption in the home and for water utilities. However, the lack of understanding of the linkages between water, energy and carbon impede the formulation of appropriate strategies.

  1. Understand water and energy connections in individual households.
  2. Characterise "household types". This will develop an understanding of different households and build a dataset of relevance to city-scale simulation.
  3. Understand city-scale water-related energy use and greenhouse gas emissions by using detailed household data and other city-scale information.
  4. Identify opportunities to reduce water-related energy. This will quantify the water and greenhouse gas reduction potential of a range of options including technological, behavioural and policy changes, in the water, energy, building and appliance sector.